UNIVERSITÄT REGENSBURG
 Fachbereich Wirtschaftswissenschaft

A SIMPLE MAXIMUM PRINCIPLE
by

Ekkehart Schiicht

Serie B:
Nr. 2
Unternehmensforschung
Statistik
Okonometrie

DISKUSSIONSBEITRÄGE
April 1972

Dies ist ein informeller Diskussionsbeitrag.

PONTRJAGIN＇s Maximum Principle is becoming a standard tool of economic analysis．The purpose of this paper is to provide the student with a rather simple proof of a special version which is almost exclusively used in dealing with economic problems ${ }^{\text {l }}$ ．

2．The Problem

Eezo：e by \boldsymbol{p}^{k} the Euklidean k－space．The vector $x(\tau) \varepsilon \dot{申}^{n}$ denotes the sJate of the considered economic system at time τ ．We are interested in the development of the system during the time interval $\left[t_{0}, t_{1}\right] c \mathbb{c}$ ．The $\therefore=\therefore$ ane $\dot{x}(\tau) \quad O$ tre state at any point of time $\tau \varepsilon\left[t_{0}, t_{1}\right]$ is subject to the constraint $\dot{x}(\tau) \varepsilon U$ where U is a closed subset of $\dot{\phi}^{\bar{n}}$ ．Furthermore we resuire tine tiwe paths $\dot{x}(\cdot)$ to be piecewise continuous functions of $\tau{ }^{2}$ ） The time path $x(\cdot)$ is determined by the control $\dot{x}(\cdot)$ together with the $\therefore=\Sigma=$ al coniition $x\left(t_{0}\right)=x_{0}$ ．The problem is to choose an admissible こロニ＝ォol suci ziat the integral
$\therefore \quad \int_{t_{0}}^{t_{1}} \hat{=}\{x(\tau), \dot{x}(\tau), \tau\} d \tau$
is maximizea．ne assume the function $f: 耳^{2 n+1} \longrightarrow$ to be continuously EEerentiacle．तore formally，（1）is to be maximized subject to

之，$\quad x_{i}=x_{0}, \quad \dot{x}(\tau) \varepsilon U$ for all $\tau \varepsilon\left[t_{0}, t_{1}\right]$

三xミニミie．Insenoret x as the capital stock and \dot{x} as net investment in the $\approx=0$ ony．If $\hat{\psi}, x, \dot{x}$ ，is the maximum consumption obtainable for given capital ミこここえ x and given $\hat{E}^{-\tau \cdot} \cdot p\{x(\tau), \dot{x}(\tau)\}$ gives the discounted sum of cr．sumption for a rate of －－un＝σ 。

```
-: Zne Eoilowing h:s been presented in a course on the theory of invest-
    ment neld \(\bar{a}\) : the University of Regensburg in winter 1970/71.
三; Eormally:
    \(\dot{x}(\cdot)=\left\{(\tau, \dot{x}) \mid t_{0} \leq \tau \leq t_{1}, \dot{x}=\dot{x}(\tau)\right\}\)
```

Now we intend to derive a necessary condition which must be satisfied if the integral (1) has assumed its maximum value. As will turn out in practical applications, this condition (the Haximum Principle) is often sufficient to determine the solution of the maximization problem if one knows from other reasons that there exists a solution at all.

Let $x(\cdot)$ be a solution of the maximization problem. Since we have

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}^{t}}^{t} \dot{x}(\tau) d \tau \tag{3}
\end{equation*}
$$

the time path $x(\cdot)$ remains unchanged if $\dot{x}(\cdot)$ is replaced by a control $\dot{x}^{\prime}(\cdot)$ which differs from $\dot{x}(\cdot)$ at a finite number of points of time, and the integral (1) remains unchanged, too. This consideration leads us to the following conclusions:

1. "ithout loss of generality we can assume that the right hand limit $\lim \dot{x}(\tau)$ exists for all $\tau \in\left[t_{0}, t_{1}\right]$. $\tau \downarrow t$
2. Any admisbible control $\dot{x}^{\prime}(\cdot)$ which differs from $\dot{x}(\cdot)$ only at a finite number of points of time is a solution of the maximization problem, too.

Now we start the main argument. We replace the control $\dot{x}(\cdot)$ by an admissible
trol $\dot{y}(\cdot)$ and use the fact that the value of the integral cannot be increased b_{i} this procedure. Nore formally: We choose a number $\alpha>0$, a voint of tia: $\varepsilon \varepsilon\left[t_{0}, t_{1}-\alpha\right]$ and an $u \varepsilon U$ and define the control $\dot{y}(\cdot)$ by

$$
\begin{align*}
& \dot{y}(\tau)=\dot{x}(\tau) \text { for } \tau \varepsilon\left[t_{0}, t\right) \cup\left(t+\alpha, t_{1}\right] \tag{4}\\
& \dot{y}(\tau)=u \quad \text { for } \tau \varepsilon[t, t+\alpha]
\end{align*}
$$

This control gives rise to a correzponaing developmer. of the state $y(\tau)$ of the system, since $y\left(t_{0}\right)=x_{0}$ from admissibility:

$$
\begin{align*}
& y(\tau)=x(\tau) \text { for } \tau \varepsilon\left[t_{0}, t\right) \\
& y(\tau)=x(t)+(\tau-t) \cdot u \text { for } \tau \varepsilon[t, t+\alpha) \tag{5}\\
& y(\tau)=x(\tau)+\int_{t}^{t+\alpha}\{u-\dot{x}(\sigma)\} d \sigma \text { for } \tau \varepsilon\left[t+\alpha, t_{1}\right]
\end{align*}
$$

Since $x(\cdot)$ is optimal and $y(\cdot)$ is admissible for any $u \varepsilon U$, we have

$$
\begin{equation*}
\max _{u \varepsilon U}\left[\int_{t_{0}}^{t_{1}} f(y(\tau), \dot{y}(\tau), \tau) d \tau-\int_{0}^{t_{0}} f(x(\tau), \dot{x}(\tau), \tau\} d \tau\right] \leq 0 \tag{6}
\end{equation*}
$$

1)

Inserting (5) in (6) and dividing by α yields
(7)

$$
\begin{aligned}
\max & \frac{1}{\alpha}\left[\int_{u \in U}^{t} f\{x(\tau), \dot{x}(\tau), \tau\} d \tau+\int_{0}^{t+\alpha} f(x(t)+(\tau-t) u, u, \tau\} d \tau+\right. \\
& +\int_{t+\alpha}^{t_{1}} f\left(x(\tau)+\int\{u-\dot{x}(\sigma)\} d \sigma, \dot{x}(\tau), \tau\right) d \tau-\int_{t}^{t+\alpha} f\{x(\tau), \dot{x}(\tau), \tau\} d \tau \leq 0
\end{aligned}
$$

This holds for all $t \in\left[t_{0}, t_{1}-\alpha\right]$ and reduces to
(8)

$$
\max _{u \in U}\left[\frac{1}{a} \int_{t}^{t+\alpha} f(x(t)+(\tau-t) u, u, \tau\} d \tau+\right.
$$

$$
\left.+\frac{1}{a}\left\{\int_{t+\alpha}^{t_{1}} f\left(x(\tau)+\int_{t}^{t+\alpha} u-\dot{x}(\sigma)\right) d \sigma, \dot{x}(\tau), \tau\right) d \tau-\int_{t}^{t} f\{x(\tau), \dot{x}(\tau), \tau\} d \tau\right\} \leq \leq 0
$$

Tor continuity reasons the inequality (8) remains true in the limit for $\therefore \downarrow$. In order to take tits limit we apply i' HOSPITAL's Rule ard find ${ }^{2}$
(y. $\quad \max +i k\left[f(x(t)+\alpha u, u, t+\alpha\} \cdots f\left(x(t+\alpha)+\int\{u-\dot{x}(\sigma)\} d \sigma, \dot{x}(t+\alpha), t+\alpha\right\}+\right.$

$$
\left.\left.+\int_{t+\alpha}^{\tau_{x}} f_{x}: x(\tau)+\int_{t}^{t+\alpha}\{u-\dot{x}(\sigma)\} d \sigma, u, \tau\right\} d \tau \cdot\{u-\dot{x}(t+\alpha))\right]<0
$$

$$
f o r \text { all } t \in\left[t_{0}, t_{1}\right)
$$

i. The maxima exists since U is closed and f is continuous.
2. Eec e. 5. W..UUMN, Principles of Mathematical Analysis, second edition, Zen York 1964, p. 94
where f_{x} denotes the vector of the partial derivatives of f with respect خ0 its first n arguments. (The last term in the square brackets denotes the E=-er product of the vectors $\int f_{x} d \tau$ and (u- $\left.\dot{x}\right)$.)
$\because \because$ reduces to
(10)

$$
\begin{gathered}
\max _{u \varepsilon U}\left[f\{x(t), u, t\}+u \cdot \int_{t}^{t_{1}} f_{x}\{x(\tau), \dot{x}(\tau), \tau\} d \tau\right] \leq \\
\leq f\{x(t), \dot{x}(t), t\}+\dot{x}(t) \cdot \int_{t}^{t_{1}} f_{x}\{x(\tau), \dot{x}(\tau), \tau\} d \tau \\
\text { for all } t \in\left[t_{0}, t_{1}\right)
\end{gathered}
$$

There is only one additional step to be taken to obtain the Maximum Principle. We have to recall from the discussion of page 2 that any control which differs from $\dot{x}(\cdot)$ in at most a finite number of points of time, is an optimal control too. This implies that it is necessary for an optimal control that the inequality (10) is satisfied for almost all $t \varepsilon\left[t_{0}, t_{1}\right]$, i.e. for all t exept at most a finite nueser of points of tine. Furtherinore we note that the inequality sign in (10) can be replaced by strict equality since $\dot{x}(t) \varepsilon U$. Thus we conclude:

Theorem. Let f be a continuously differentiable function. A necessary -nndition that the integral (I) is maximized by a piecewise continuous con...0l $\dot{x}(\cdot)$ satisfying $\dot{x}(\tau) \varepsilon U$ for all $\tau \varepsilon\left[t_{0}, t_{1}\right]$ is that

$$
\begin{equation*}
\max _{u \varepsilon U}\left[f\{x, u, t\}+u \cdot f_{t}^{t_{1}} f_{x}\{x, \dot{x}, \tau\} d \tau\right]=f\{x, \dot{x}, t\}+\dot{x} \cdot \int_{t}^{t_{1}} f_{x}\{x, \dot{x}, \tau\} d \tau \tag{11}
\end{equation*}
$$

holds for almost all points of time.

We remark that the proof and hence the theorem remains true for $t_{1}=\infty$.
4. Remark

Although the above formulation of the Maximum Principle is most suitable with regard to the analysis of the given problem, it can be formulated equivalently in the following way.

こefine
(i2)

$$
\varphi(t)=\int_{t}^{t_{1}} f_{x}\{x, \dot{x}, \tau\} d \tau
$$

From (12) follows the equivalent definition of $\varphi(\cdot)$ by the system of differential equations
(13) $\dot{\varphi}=-f_{x}(x, \dot{x}, t)$ for almost all $t \in\left[t_{0}, t_{I}\right]$
together with the requirement of continuity and the boundary conditions

$$
\begin{equation*}
\varphi\left(t_{1}\right)=0 \tag{14}
\end{equation*}
$$

Now the principle can be given the following formulation.

Theorem. Let f be a continuously differentiable function. A necessary sodition that the integral (1) is maximized by a piecewise continuous control $\dot{x}($.$) satisfying \dot{x}(\tau) \varepsilon U$ for all $\tau \varepsilon\left[t_{0}, t_{I}\right]$ is the existence of a continuous vector of functions $\varphi(t)$ satisfying (13) and (14) such that
(15)

$$
\max _{u \in U}\{f(x, u, t)+u \cdot \varphi(t)\}=f(x, \dot{x}, t)+\dot{x} \cdot \varphi(t)
$$

is satisfied for alnost all $t \varepsilon\left[t_{0}, t_{1}\right]$. ${ }^{1)}$

[^0]
[^0]: 1) This is the formulation as given by 'lheorem 7 in L.S.PONTRJAGIN et al., Mathematische Theorie optimaler Prozesse, Munchen 1967, and applied to our problem.
