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ABSTRACT

Consider the regression model

- =3 M . ~~ 2
Yy, = a, x, +u t=1,2,..., T; u, N{0,0%)

n . ©
with gt € R, X € R observations, a, e rR” coefficients to be

estimated and ut € R normal disturbances for the time periods

t=1,2,...,.T. The coefficients are assumed to be generated by a
random walk with normal disturbances vt € mn
a = a + vt t=1,2 T: vt ~ N{o,Z
t - t"‘l - ’ » 2 4 o s s ( . )

z = T, ., 0% > 0, i=1,2,....n
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Thus the variances in the model are o2 and Z or (o%, 0,%,...02 ).
This paper develops a method for estimating these variances by

means of certain "expected statistics estimators’™. These

estimators are compared to maximum likelihood estimators.

“|A Windows program with C-source that implements the estimation procedure
dgscribed here is available at my website. To download, click here.
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Introduction

Consider the regression model
= + = * o s o 9 ; ~ * z
Y, a, x, u t= 1,2 T: u, ¥(o q )

A n . n -
with y € R, x, €R observations, a, € R coefficients to be

estimated and u, € R normal disturbances for the time periods

t=1,2,....T. The coefficients are assumed to be generated by a

random walk with normal disturbances vt € Rn

a, = a + v t=1.2.....T: v ~ N(0.E)

The variance-covariance matrix Z is assumed diagonal

g,?% 0
c,?
zZ = " ., o > o0, i=1,2,...,n
0 ‘o? !
n
Thus the variances in the model are o2 and Z or (0%, o,%,...02 }.

n

The estimation problem is the following: Given the observations
(x,. xz.....xT) and (y,. gz....,gT). how to estimate the time
path of the coefficients (a,. az....aT) and the variances o?

and zZ7?
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The main difficulty here is to obtain estimates for the
variances., Once the variances are determined it is relatively
easy to give estimates for the coefficients, either by recursive
Kalman filtering or, still easier, by the method described in

Schlicht (1985, 52-56).

One possibility would be to estimate the variances by the maximum
likelihood method. The purpose of this paper is to propose a
variance estimator which compares favorably to the maximum

likelihood estimator in several respects:

- it is asymptotically equivalent to the maximum likelihood
estimator:

- it is computationally much easier to implement:

- 1t has a direct intuitive interpretation also in small
samples;

- and it seems to work better in small samples,.

The plan of the paper is as follows: Part 1 gives some notation
and preliminary results. Part 2 introduces the "expected
statistics'™ estimators and compares them with maximum likelihood

estimators. The appendix gives a numerical illustration.



1. The Model

1.1 Notation

‘and urite (1).7(2) as

Pa

‘Define further

y

Define
Y, u,
Y, u,
Yy:= . , u:= .
Y Ur
order Tx1 Tx1
0
X,
X:= X2
X
‘order T x Tn

a, v

a, v?

. , Vi= .

a T

T
‘Tnx1 (T-1)nx1
-1 I 0

I I

0 -1 1

7(T—1) n x Tn

= Xa + u, u~ N(0,0%1)

v, Vv ~ N(0,S},

1= 1 ® Z,



which permits us to write

Denote further by e, € R” the n-th column of an nxn identity

matrix and define

i i
which permits us to write
’vi:= P, a
where vii= (v;.ivi,...vf)'idenotes the time path of the change in

the i—-th coefficient,

1.2 A Likelihood Function

Consider now the time averages of the coefficients

By using the Tn x n matrix



I
- I

1
Z:= = .
T |
I

‘can be expressed also als

(14) Z'a = a

‘We note

(15) PZ

[}

©
N
N

= 1, P'(PP") " 'P + 2Z°

I
et

Define the Tn an matrix

. - P
1 P =

(18) [ 2]

'Egs. (7) and (14) can be combined now to

N v
TN
a
since P' = (P'(PP’)~%, Z), this can be solved for a:
(18) a = P'(PP’)"! v + za

Inserting this into (&) yields
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(19) Yy = XZa + w., w:i= XP'(PP') 'v + u

‘We note that

XZ X2

1}
o 1 s
M oo
- s

‘Thus (19) stands for a standard GLS regression in the
time-averages a of the coefficients, and it is reasonable to
assume that XZ has full rank:
(21) r(Xz) = n
‘The disturbances w in (19) are normally distributed:
W o~ N(O,V), V:i= XP'(PP") 'S(PP") " 'PX’' + oI
likelihood function associated with (19) is therefore

(23) L (3.0%.0,%....02):= log det V + (y'- a'z’X’') Vv~ '(xza-y)

Minimization with respect to a yields the Aitken estimate

(24) a = (Z'X'V'xz)"t z'x'vly
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(25) L (o%2,0,%.,....0

-10

We may thus view a as a function of the variances and the
observations and insert it into {(23) in order to obtain a

concentrated likelihood function

.....o;) + constants

which could be used, in principle, to determine the variances

‘This can, however, be simplified considerably.

1.3 Estimates for the Coefficients

For given a, y. and X, the system (18),7(22) defines the
conditional normal distribution of a with mode and expectation

equal to

(26) 'Z& + P'(PP')"1S(PP’')T!PX’'V-!(y-xza)

~

We replace the parameter a by its estimate a and take the

~

resulting expression as our estimate for the coefficients a

~ ~

(27) a := za + P'(PP") 'S(PP ) 'PX V™! (y-xza)

This estimate can be represented also in a different way.
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Proposition 1 (Schlicht 1985, 55-56) The estimate a in (27)
‘satisfies

‘where

M = (X'X + 0?P’s™'P)

'is nonsingular,

‘Proof. Eq. (28) is proved by evaluating the left-hand side
explicitly, which leads to the result X'y.

'In order to prove nonsingularity of M, consider its rank:

- X
r(M) = r{(X’, cP’S'%

ITERL

os™ P

= r(X',P")

If (X'.,P') were not of full rank, there would exist vectors
c, € R t =1,2....T,

not all of them zero, such that
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is satisfied. If {31) is premultiplied Bg Z° from (13),7this

‘leads to Z'X'c, = O which implies, together with (21),.

c,=0.

Since P’ is of full rank (T-l)-n.fthis implies also that

Cz2. C3.....C, are zero. This proves the proposition.

In view of Prop. 1, the estimate a can be given a direct

desriptive characterization: It minimizes the weighted sum of

squares

This minimization is, for given variances, equivalent

minimization of the expression

Q := u'u + o2 v's-ly

= (y'-a'X"){Xa-y) + c?a’P’s”'Pa

with the

’Eq.i(za) is just the first-order condition for a minimum of Q

with respect to a.

1.4 Another Representation of Likelihood

We may define the estimated disturbances associated with the

estimated coefficients in a natural way:

1 1

£
il

XP'(PP') 'v + u,.

~ ~ ~ ”~ A
u = y-Xa, v :1= Pa, v, := P.a, i =1,2,...,n
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All these are functions of the variances (and the observations}).
We may insert them into (32) and obtain the estimated sum oOf

squares as & function of the variances:

A AN "~ A
Q := u'u + g? v's~t vy

Position 2 (Schlicht 1985,55). The concentrated likelihood

%*
function L , as defined in Eq. (23), is equivalently given by

F3

- X
(35) L' (0%.Z) = log det V + —5 -

Proof. The first terms in (23) and (35) are identical.

Fa)
We must prove that the second term in (23) is equal to Qsc?.

From (19). (24). and (33) we find for this term

(36 w'vilu = T+ U’V u

Using the definition of V and the relation X'u o2P’'s~!'v, which

can be derived from (28).7(29). and (33), this reduces to

which completes the proof
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1.5 Notes on Computation of the Maximum Likelihood Estimates

The representation (35) of the likelihood function makes it
possible to actually do maximum likelihood estimation since a
inversion of V is avoided. The determinant of V can be determined
practically since each element of V can be expressed by a simple
formula (Schlicht 1985, 57-78). The sum Of squares 6 is also
rather easy to compute since it requires, basically, to solve the
system (28) for ;. The matrix M is a very simple symmetric band
matrix of band width (n-1). The system can be solved accurately
and efficiently by a Cholesky decomposition. When actually doiﬁg
these computations, I encountered repeatedly the problem,
however, that the likelihood function was rather badly behaving
for short time series. An example is proviqed in the appendix.
Further, tHe intuitive understanding of the estimation procedure
seemed hard to me to obtain. This led to the development of

another kind of estimator, which will be described in the

following part of the paper.

-~
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2., Variance Estimation

2.1 The Heuristic Argument

~

The estimated coefficients a along with the estimated

disturbances are random variables. Their distribution is

determined by the true variances along with the observations.

may write for instance

(38) a = M~ !X’y = M7'X’(Xa+u)

A~

by using (28) and (é). This gives a in terms of the true

coefficients a and the true disturbances. Since

(39) X' (Xa+u) = X'Xa + X'u + G*P’'S”'P - g2?P’s”!P
and v = Pa from (7) Eg. (38) can be re-written as
(40) a=a+ MY X'u-o?pP's vy,

Premultiplication of (40} with Pi yields

<>
1]

(41) i v, + P.M (X u - ofP'sv), i=1,2,....n

~ ~ ~

Similarily, u = y - Xa = X{a-a) + u can be formed and

We
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(42) u=1u- XM YX'u - o?P’'s"'v)
is obtained.
Thus u and v, vz....vniare linear functions of the normal random

variables u and v, and wve may calculate the expectation of the

squared errors:

(43) E{u’u)= o?(T - trxM™'x")
7,———/
~ 'I\ _ 2 _ _ 2 -1 » T =
(44) E:(vi Vi) = oi(T 1) o tr P,M""P, i 1.2....n

‘deriving (43) and (44) we note that

n ol
(45) X'X + c?P'S™!'P =2 X'X + I r P.'P
) te] i i
i=1 1
and that E(£’¢) = E{tr(£¢°)) for any random vector £.)

The expectations (43) and (44) are functions of the variances and

‘the observations:

c? ’ 1 ..
. = 2_ —1'= e ’
fo(a.Z). o tr XM™'X E(—— u u)
c? S N
. , = g2 - . -1 - —
(47) fi(o.Z). o7 .t tr P/M P, E( -1 Vi vi)
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~ ~

On the other hand, the estimated errors v, and u are functions of
the variances and the observations, too, and the corresponding
"empirical variances™ can be written as functions of the

theoretical variances again:

- S S PR -1 1
(48) m_(6%.Z): = 3 Yy (I-M7TIX7)(I-XM" )y = 3 u'u
’ 1 1 . .
- 2 . PO ’ -1 ’ -1 R »
(49) mi(o . Z): T—lg M Pi PiM y T—1 vi vi
i=1,2,....,n

The proposed estimation procedure is to select variances c? and Z
‘such that the “"empirical variances® (48).7(49) are just equal to
‘the corresponding expectations (46) and (47):

”~

- Az - ,\2 .
(50) mi(o . Z) fi(c . Z). i 0,1,2,....n

L[}

7ue call these estimators "expected statistics estimators™. The
intuition underlying these estimators is straightforward: We
7se1ect the variances such that some observed statistics - i.e.
‘the values of the moments (48) and (49) - are just equalfto their

expectations under the assumption that the postulated variances

are the true variances,

‘Before we proceed to analyze our variance estimators further, a
small digression on the underlying estimation principle might be

'in place.
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‘Some Remarks on the Method of Expected Statistics,

‘The method of expected statistics is obviously a simple
generalization of the well-known method of moments where
‘theoretical moments are equated to their empirical counterparts.
It leads actually to very familiar results in many cases, as the

following two examples might indicate.

1. The Parameters of a Normal Distribution. Consider a random

draw (x,, X,., ..,xn) from a normal population with unknown mean yu
and unknown variance o?., In order to employ the method of

expected statistics, we need two statistics. Take the mean x and

the variance s?

LA
I

(51)

Since X, is normally distributed, x and s? are random variables

with the expectations

and
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1
(54) E(s?®) = (1- ——) - ©of

Equating (51) with (53) and (52) with (54) gives the estimators

for p and o?:

(55) yo=

(s¢6)

Q>
]
H™M3
~
]
Pt
I
b
A

which are just the usual unbiased moment estimators.

2. Parameter Estimation in the Classical Redression Model.

Consider, as a further example, the classical regression problem

(57) gy o= YB + £ & ~ N(0.0%1)

with aemn. eeRT, geRTiand Y a real Txn matrix. Observations are Y

and y, and the parameters g and c? are to be estimated.

We may calculate the expectation of the empirical

cross-correlations Y'y:

(58) E(Y'y) = E(Y'YB + Y'E) = Y'Yp
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This is equated to the observed vector Y'y and yields the least

squares estimate
(59) B = (YY) 'Y’y

We may further calculate the expected variance of the estimated

~

error ¢ = y-Yg = (I-Y(Y'Y) 'Y )¢

which is

A A

(60) E(€'¢) = 0?(T-n)
Equating this expectation with the calculated value of u‘u yields

the usual best quadradic unbiased estimator

1 1

(61) °f = ¢ ¢ T Y(I-Y(Y'Y)TiY )y

™)
L}

In a similar but less straightforward fashion we may also obtain
the GLS estimators via expected statistics, and we could

interpret the Aitken-estimator (24) for a along these lines.



2.3 Another Characterization

Cconsider the function

(62)
1

K(o?.,0,%,..0%):= log det M + Q-T{n-1)} log o?+({T-1)Zlog o2
1 n g g g i

O2

which we wish to minimize. We note (using the "envelope theorem"

and representation (45)) that

3 1
. -1 ’
(63) YLl log det M = ; - tr PiM Pi
i i
3 o?
U = - -1 =
302 log det M = o3 tr PiM Pi' i= 1.2,.....n
i i
3 ~ ) R
302 Q =2 TV Yy
i i
a A 02 A * A
aci Q = - 01 Vi Vi. i=1,2,.....n
02

b4
1
-
7
[
1

tr M™!'M = tr XM™!X + I = P, Tn
(o) 1
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Necessary conditions for a minimum of (62) are:

AK 1 ) 1
=3 . -1 L - - ——
352 : 82 tr P1M P1 T{n-1}) 32
i
1, 1 ’ ; R
- A Q + ~ z ~ Vi Vl = 0
cf o2 i o*%
3K o? ) 1
(6 = tr P.M"!P, - . .+ - —_— =
(65) 302 ~ Pl i = v1 v1 (T-1) < 0
o o 2 o
i i i
i =1,2,.... n

The first term in (64) is equal to (Tn - trXM !'X')/c?, and the

AT A N

last two terms add to u u/c?. Thus we may write instead

A~ 1 1 At A
) 2 e —— -1y = —
(66) o°(1 T trXM™ X ") T u u
A 71 At A © -
- e T —— -1 v ’.=
(67) ci = 703 vivi =1 tr PiM Pi i 1.2,....n

Comparing these equations with our estimation equations (46) -
(S0) we see that they are equivalent. In case K has a uniqgue
minimum we might characterize our variance estimators therefore

also as minimizers of K.
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‘Asymptotic Equivalence With Maximum Likelihood Estimators

In this section it will be shown that the "statistics criterion®
'K, as defined in (62) is asymptotically equivalent to the

- .
"Likelihood criterion” L as given in (25) or (35). We show

‘that
n ~
(e8) log det M - T(n-1) log o?% + ('r-1)iz=:1 log o7 + Q/c?
log det V + 6/02
7approaches unity if T goes to infinity
‘Consider the Tn X Tnh matrixes
B = [ ;.] $§ =18z
‘Note that B~! = 3’(33')“ and consider
(70) Vo= xP-t $ B R’ o+ 0?1

‘which is obtained by substituting P and $ in the definition (22)

of V by P and S. Since

. [(PP’)" o]

(PP*)" ! = o I

‘we find
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(72) B-* § B'-' - P'(PP")S(PP")"'P = z:Z'

‘which tends to zero with increasing T. This implies that

get (V)

a-e—;;—('\‘;s'—-o 1 for T o o«

and we may approximate det V by det v for large T.

Consider now the matrix

=
it
x
x
+
Q
»
o
m?
[
-
ot

(74)

which is obtained by substituting P'S™'P by P'S "'F

'in the definition (29) of M.

‘We note that

M -M =2z 'z’
which approches zero for large T, and we may approximate M by M

‘large T.

~

We are going to consider now how V and M are interrelated. Define

‘the matrix



(76) A := (X P

‘We note that

(77) V = AA" + o021

‘and

(78) o= ﬁ'§'%(A'A + o021y § % B

‘Denote the T eigenvalues of AA" by u,. pz,...,pT. These are also

eigenvalues of A'A, but A'A has in addition Tn-T zero
‘eigenvalues. The eigenvalues of AA° + o211 are Ai = pi+oz.
7i=1,2,....T. These are also eigenvalues of A’A + oI, but this
matrix has, in addition, the eigenvalue 6% with multiplicity

Tn-T. Since the determinant of & matrix is equal to the product

‘of its eigenvalues, we obtain

(79) det (A'A + 02I) = (02) ™77 . get (AA'+0%1)
‘and, together with (77) anda (78),
(80) det M = (02)T"T . get §-' . get PP’ - det V
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Since
-1 1
- - 1 -1 1
(81) det P = T det
‘1
11 1,.... 1%
-1 0
-1 .
1 , _ T-1
= 7 det = (-1)
-1
1 2 . T
-~ ~ n - T - -
we find det PP’ = 1, We note further that det S =( I o;) take

7logarithms in (80), rearrange terms, and obtain

n A
log det M + T - 2  log of - T (n-1) log 0% + Qro?

(82) — = 1
log det V + Q/o?

Compare this with (68). For large T we can approximate M by M, V
by V and T-1 by T. This establishes the asymptotic equivalence
between maximum likelihood estimators and the expected moments

estimators proposed here.

2.5 Computation

In this section, we drop the circumflexes and denote our

‘estimates simply by o?, of. etc. Multiply Eq. (64) by o? and Egs

7(65) by cz. I1f we add the resulting equations, we obtain
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6% = Q/(T-n)

'is inserted into (62) and we obtain the concentrated loss

function which involves only the variance ratios
(84) p. =0

Note that Q and M are functions of these variance ratios, rather

than of the variances themselves:

M = M(p). Q@ = Q(p)

Disregarding constants, the resulting loss function can be

written as

(86) H(p) = log det M(p) + (T-n)log Q(p) + (T-1)Zlog p,

We shall refer to this function as the '"statistics criterion”

henceforth.

‘The estimation equations (46) - (50) may be expressed in terms of

the variance ratios as

P, = g9,(p)  witn



1 {T-n)

o m— i o ————— -1 » P
(87) g9;(p) := ( vV, g * tr PMTIRLT). i=1,2,......n

where v ‘v ,. Q and M are functions of p.

In order to calculate tr PiM“Pi we use the decompostition

M = BB’ which has been used for solving the normal equation., and
we note that tr PiM"Pi is equal to the sum of all squared
elements of B"P; . We need not store B~'! (which is not banded)
in order to do this calculation, it is only necessary to compute

two colums of B~! at a time. In this way. we determine gi(p) and

update the weights according to

» - 2 .
(88) P, = Py 7/ gi(p). i=1,2,.....n

This process has been found to converge in many examples. (I have
not found a single case where (88) dit not converge). It has not
been possible up to now to establish general concavity of the

statistics criterion, however.

2.6 Comparison With the Maximum Likelihood Estimator

The likelihood (35) may be expressed in terms of the variance

ratios by using

~




(89) W= —V

which is a function only of the variance ratios. This leads to

* A
(90) L = log det W + —5 Q + T-log c?
which may be compared with (84},

Minimization with respect to o? leads to c%= Q/T which may be
inserted into (90). We disregard constants and write the

resulting likelihood function as
(91) L**(p) = log det u(p) + T-log Q(P)

This is the "likelihood criterion'” which may be compared with the
statistics criterion (86). In order to minimize this function, we
may calculate the deviatives with respect to P and put them to
zero. The resultung conditions (given in Schlicht 1985:58) are
numerically rather complicated, however, and much less tractable
than (87). They involve an inversion of a full (rather than
banded) T x T matrix. If T is large, this is practically
infeasible, but then the expected statistics estimators, which
are much easier to compute, are equivalent, and the estimators
proposed here seem better. If T is small, however, we typically

encounter convergency problems. It has been observed, as a rule,
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* X
that the function L has no reasonable minima if T is small,
whereas the minimization of (84) give at least a definite result.

The example given in the appendix illustrates that.

3. Concluding Comments

The proposed variance estimator seems to be a useful alternative
to maximum likelihood estimators. Many questions are still open -
uniqueness and consistency in particular,

The asymptotic equivalence of the proposed estimator and the
maximum likelihood estimator in conjunction with computational
manageability and (arguably) better performance in small samples

might render it even the superior alternative.

Let me conclude with a quite general remark regarding the,
estimation of the time-path of the coefficients in (1) - (3): We
cannot recover the coefficients a from the observations on X and
Yy since there are much more coeffic;ents than data points. We
can, however obtain sensible guesses about the state of the
economy. and these are our estimates ; as given in (27). They
denote the expected mean of the distribution of a which remains a

random variable with non-zero variance even if we enlarge the

time horizon and the sample size to infinity.

-~ .
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If we generate data and coefficients according to (1) and (2) on

a computer, we may compute estimates for the variance ratios P

A A

and compare the estimated time~path of the coefficients a{p) with
the estimation a(p) we would get if we had used the true variance

~

ratios p for computing a, but it does not make very much sense to
compare a{p) with the true time-path of the coefficients a, since
they deviate randomly from their expectation. In Monte-Carlo

Studies we should take not the true coefficients, but rather a(p)

as the benchmark,
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'APPENDIX
Assume n = 2, T= 100, o2 = .1, °§ = .1 and o%= .01, a,, = 1
2
&,, = 2 and generate coefficients according to (2). Let e_ denote

t

a random variable uniformely distributed over the interval
Iﬂs. 1.5]’and generate observations x, . = 1 and x, . = e, for all
t=1,...100, Generate a time series of Y, according to (1). A

possible outcome is summarized in Table 1.

From x and y we may compute the likelihood criterion (93) and the
statistics criterion (88) for alternative variance ratios., This

'is done in Table 2.

We note that the true variance ratios are p, = 1 and P = .1, and
that the minimum both of the likelihood and of the statistics

criterion is fairly close to this (We may further compute the

T
z (ait - ai_l)2 from the data and compute their
t=1

variances
T-1

ratios, These "empirical variances’™ and the corresponding

"empirical variances ratios"™ are also given in the tables).

If we use only T = 25 rather than T = 100, we obtain table 3, We

see that the two criteria suggest different results
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We find in particular that the minimization of the likelihood
criterion leads to rather unreasonable corner solutions. It is my
impression that this is a quite general phenomena in small
samples, which is even more pronouced when we deal with more than
two explanatory variables. The "expected statistics”™ estimators,

on the other hand, do not seem to tend to corner solutions.

Figures 1 and 2 illustrate, finally, the decomposition. Fig. 1
depicts the time path of the true coefficients (light) and the
time path of the optimal estimates ;(p) (heavily drawn curve).
Figure 2 depicts the time path of the optimal estimates ;(p) and
with the estimated time-path of the coefficients Q(B). computed
Bl = 7.2948 and ;2 = 1.4684 (light). We see that the estimated
variance ratios are greater than the true values, and the
resulting time-paths exhibit slightly more variability than ;(p).
The paths ;(p) and ;(;) are qualitatively very similar. We
observe also a rather close connection between the true

A A

coefficients a and their expectations a(p) and a{(p).

As an aside we note further that the averages of the true
coefficients are (4.7953, 1.6742). The estimated averages are

A = (5.1580, 1.3803). Estimating A by OLS yields (6.2160, .3210)
which differs significantly from the true averages. Thus the
assumption of time-invariant coefficients, although not
unreasonable in the example, leads to a considerable

underestimation of the influence of the exogeneous variable X,.

~
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'APPENDIX B

‘Expected Statistics Estimators: A Definition
by Ekkehart Schlicht,
Technische Hochschule, Schloss, 6100 Darmstadt

‘September 1989

The expected statistics estimators introduced in the text can be

‘defined as follows:

‘Consider the model given by the density function
7f(Y|xre)
where

'y endogenous observables

X exogenous observables

K=) exogenous non-observables, parameters

‘A statistic is a function
7S(Y9X’9)

7Define the expected statistic as

S(x,8) = E{s(y, x,0)|x,0)}
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A solution & of
s(y,x,8) = S(x,8)

is termed expected statistics estimator.

The set of solutions to this equation is determind by the model,

the statistics selected, and the obervations.

If this estimation principle has been proposed somewhere, please

‘let me know!
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Figure 1
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Figure 2





